Preparation of Ultrafine Fe–Pt Alloy and Au Nanoparticle Colloids by KrF Excimer Laser Solution Photolysis

نویسندگان

  • Masato Watanabe
  • Hitoshi Takamura
  • Hiroshi Sugai
چکیده

We prepared ultrafine Fe-Pt alloy nanoparticle colloids by UV laser solution photolysis (KrF excimer laser of 248 nm wavelength) using precursors of methanol solutions into which iron and platinum complexes were dissolved together with PVP dispersant to prevent aggregations. From TEM observations, the Fe-Pt nanoparticles were found to be composed of disordered FCC A1 phase with average diameters of 0.5-3 nm regardless of the preparation conditions. Higher iron compositions of nanoparticles require irradiations of higher laser pulse energies typically more than 350 mJ, which is considered to be due to the difficulty in dissociation of Fe(III) acetylacetonate compared with Pt(II) acetylacetonate. Au colloid preparation by the same method was also attempted, resulting in Au nanoparticle colloids with over 10 times larger diameters than the Fe-Pt nanoparticles and UV-visible absorption peaks around 530 nm that originate from the surface plasmon resonance. Differences between the Fe-Pt and Au nanoparticles prepared by the KrF excimer laser solution photolysis are also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of photodecomposition of gaseous chlorobenzene by KrF excimer laser.

Gaseous monochlorobenzene was irradiated with KrF excimer laser (248 nm) under reduced pressure. The photodecomposition was an apparent first order reaction. When the system contained no additive gas, the photolysis was found to give benzene (conversion yield: 49%) in the gas phase and many unidentified products in the solid phase. On the other hand, in the presence of oxygen, carbon dioxide (1...

متن کامل

Optical Limiting Properties of Colloids Enhanced by Gold Nanoparticles Based on Nonlinear Refraction for Cw Laser Illumination

In this work, thermo-optical properties of gold nanoparticle colloids are studied using continuous wave (CW) laser irradiation at 532 nm. The nanoparticle colloids are fabricated by 18 ns pulsed laser ablation of pure gold plate in the distilled water. The formation of the nanoparticles has been evidenced by optical absorption spectra and transmission electron microscopy. The nonlinear optical ...

متن کامل

Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd

Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...

متن کامل

PMN-PT (lead magnesium niobate-lead titanate) piezoelectric material micromachining by excimer laser ablation and dry etching (DRIE)

In the attempt to find the appropriate micromanufacturing technology of PMN-PT (lead magnesium niobate–lead titanate) piezo material, whose MEMS-related applications look promising, two methods are investigated: excimer laser ablation (using KrF gas) and inductively coupled plasma (ICP) dry etching, also known as DRIE (using Ar/C4F8 gases). The paper quantitatively reports the optimal parameter...

متن کامل

Engineering the plasmon resonance of large area bimetallic nanoparticle films by laser nanostructuring for chemical sensors.

Large area fabrication of metal alloy nanoparticles with tunable surface plasmon resonances on low-cost substrates is reported. A UV excimer laser was used to anneal 5 nm thick Ag Au bilayer films deposited with different composition ratios to create alloy nanoparticles. These engineered surfaces are used to investigate how the wavelength of the surface plasmon resonance affects the optical det...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009